Pages

mardi 10 mai 2016

IceCube ne voit pas de signes de neutrinos stériles

Le détecteur IceCube a pour objectif principal d'étudier les neutrinos de très haute énergie qui proviennent du milieu extragalactique, mais il peut aussi être utilisé pour faire des études d'oscillométrie des neutrinos et chercher des signes de nouvelle physique, comme l'existence d'un quatrième neutrino, stérile.



Le neutrino stérile est issu de travaux théoriques et pourrait être fort intéressant si son existence était démontrée, car il possède une masse, subit donc la force de gravitation, mais n'interagit via aucune autre force, d'où son qualificatif de stérile. Il est donc virtuellement indétectable et serait ainsi un candidat idéal pour expliquer la matière noire. Et les neutrinos sont des particules qui ont la caractéristique rare d'osciller d'une saveur à l'autre. Les trois types de neutrinos connus peuvent se transformer l'un en l'autre au cours de leur trajet dans le vide ainsi que lorsqu'ils traversent la matière, où leur oscillation est d'ailleurs accentuée (c'est l'effet appelé MSW). Le neutrino stérile se comporterait de la même façon.
Il est donc possible théoriquement de déceler la présence de neutrinos stériles en observant attentivement comment des neutrinos "classiques" oscillent d'une saveur à l'autre au cours de leur traversée de grandes quantités de matière, comme l'épaisseur d'une planète par exemple.
Le taux de disparition des neutrinos mu en fonction de
leur énergie et de l'angle zénithal (IceCube Collaboration)

C'est ce à quoi se sont attachés de faire les physiciens de la vaste collaboration IceCube. D’après la théorie, une signature typique des neutrinos stériles qui auraient une masse d’environ 1 eV, serait  une très forte disparition (par oscillation) des neutrinos muoniques atmosphériques ayant traversé la Terre. Les neutrinos atmosphériques sont les neutrinos qui sont produits dans la haute atmosphère par l’impact des rayons cosmiques (essentiellement des protons).
Comme ce type de mesure de baisse de flux en fonction de l’énergie incidente est accessible au détecteur IceCube, les physiciens ont recherché la présence de cet effet, afin de trouver (ou non) des indices de neutrinos stériles. La plage d’énergie des neutrinos ou antineutrinos muoniques explorée ici s’étend de 320 GeV à 20 TeV. Le résultat est que les chercheurs ne voient aucune trace de manque de neutrinos muoniques atmosphériques, ce qui leur permet de placer une nouvelle limite d’exclusion pour les neutrinos stériles, la plus contraignante construite à ce jour. Cette nouvelle limite est importante car elle exclut des résultats antérieurs qui avaient cru voir la présence de neutrinos stériles (les expériences LSND et MiniBooNE), via des anomalies observées dans des oscillations d’une saveur à l’autre qui paraissaient inexplicables autrement.
Depuis quelques années, plusieurs expériences sont parties à la recherche des neutrinos stériles, pouvant juste fixer des limites de plus en plus contraignantes dans l’espace des phases donnant la masse relative du neutrino stérile vis à vis des autres saveurs en fonction de son angle de mélange (sa façon d’osciller avec les autres saveurs).
Dans leur étude soumis à Physical Review Letters, les physiciens de la collaboration IceCube enfoncent le domaine en montrant à quel point IceCube se révèle être un outil puissant pour les études d’oscillométrie des neutrinos. Ils ont utilisé les données obtenues sur les neutrinos muoniques ayant traversé la croûte terrestre après avoir été produits dans la haute atmosphère de l’hémisphère nord. L’existence des neutrinos stériles aurait dû produire une forte disparition de ces neutrinos muoniques à une énergie située autour de quelques TeV. En effet, la traversée de matière, via les multiples interactions avec les électrons et les noyaux d’atomes, modifie l’intensité et la forme des oscillations des neutrinos, et cette variation dépend également de l’énergie incidente du neutrino.

La non-observation de la disparition des neutrinos mu attendue théoriquement si des neutrinos stériles existaient permet donc aux physiciens de contraindre les paramètres du modèle d’un ordre de grandeur plus fortement que ce que pouvaient obtenir les expériences similaires antérieures. Elle remet du coup sérieusement en question l’existence-même des neutrinos stériles, même si ces résultats ne les éliminent tout de même pas encore complètement. Elle pourrait en tous cas impacter durablement les futures stratégies de recherche de ce candidat idéal pour la matière noire.

Source :
Searches for Sterile Neutrinos with the IceCube Detector
The IceCube Collaboration, M.G.Aartsen et al,
Soumis à Physical Review Letters,
http://arxiv.org/abs/1605.01990

Voir aussi mes précédents billets consacrés de près ou de loin aux neutrinos stériles.

Aucun commentaire:

Enregistrer un commentaire

Merci !