Pages

23/06/24

Jean-Dominique Cassini n'a pas découvert la Grande Tache Rouge de Jupiter en 1665


La Grande Tache Rouge de Jupiter est le vortex connu le plus grand et le plus ancien de toutes les planètes du système solaire, mais sa durée de vie est débattue et son mécanisme de formation reste mal compris. On dit souvent que c'est Jean Dominique Cassini qui l'a découverte en 1665, mais aujourd'hui, des astronomes démontrent que ce qu'a observé Cassini à l'époque n'est pas la Grande Tache Rouge d'aujourd'hui, mais un autre anticyclone. Ils publient leur étude dans Geophysical Resarch Letters.

Ce qu'on appelle la Grande Tache Rouche de Jupiter, c'est un vortex anticyclonique géant qui comprend deux régions principales, observées aux longueurs d'onde optiques : un ovale rouge (la tache proprement dite) et une zone blanchâtre externe qui l'entoure, plus étendue le long de sa partie nord, et connue sous le nom de "Creux" ("Hollow"). Sa visibilité change en fonction du contraste avec les nuages ​​environnants et se manifeste parfois comme un seul ovale clair, couvrant les deux zones. Les mesures du vent à partir des mouvements des nuages ​​montrent que le bord du Hollow délimite la limite de la circulation associée au vortex.

La présence d'un ovale sombre à la latitude de la grande tache rouge, connu sous le nom de "Tache Permanente" qu'avait remarquée Jean Dominique Cassini en 1665 a par la suite été observé jusqu'en 1713, mais aucune autre mention n'y a été faite au delà par les astronomes jusqu'à la fin du 18ème siècle. Ce n'est qu'en 1831 que l'on retrouve des traces d'observations de ce qui ressemble à la Grande Tache Rouge actuelle.

Afin de clarifier la relation entre la Tache Permanente (TP) et la Grande Tache Rouge (GTR), Agustín Sánchez-Lavega (université du Pays Basque) et ses collaborateurs ont effectué une analyse approfondie de toutes les observations disponibles de la TP et de la GTR, jusqu'au XXe siècle. Ils ont étudié la mesure année par année de leur taille, de leur ellipticité, de leur surface et de leurs mouvements, ainsi que ceux de la zone du Hollow entourant la GTR, et ce depuis les premières observations disponibles et jusqu'en 2023. Cette étude étend et complète des résultats précédents sur le sujet par Beebe et Youngblood (1979), Rogers (1995) et Simon et al. (2018). 

Sánchez-Lavega et son équipe montrent à partir des observations historiques de l'évolution de la taille et des mouvements qu'il est peu probable que la TP corresponde à le GTR. La TP a été signalée pour la première fois par Cassini et d'autres astronomes en juillet-septembre 1665. Et il est possible que la TP ait été observée encore plus tôt par Bandtius, le 2 novembre 1632, qui rapportait la présence d'un ovale d'environ un septième de la taille du rayon de Jupiter. La TP a ensuite été observée par Cassini et d'autres en 1667, 1672, 1677, 1685-1687, 1690-1691, 1694, 1708, et a été signalée pour la dernière fois en 1713 par Maraldi. Cela indique que la durée de vie de la TP était d'au moins 81 ans. Dans toutes ces observations, aucune couleur n’est mentionnée. Mais une peinture de Jupiter en 1711 montre de manière intrigante la TP  avec une teinte rouge, rappelant la GTR actuelle.

Aucun rapport d'observation de la TP ni aucun signe de sa présence n'existent dans les observations de Jupiter entre 1713 et 1831, une période d'environ 118 ans. L'examen des dessins de Jupiter d'astronomes renommés de l'époque comme Messier en 1769, Herschel en 1778, Schroeder en 1785-1786, montre des ceintures et des taches isolées, mais en aucun cas une TP ou une tache similaire à sa latitude. Pour Sánchez-Lavega, il serait surprenant que, si elle existait encore, aucun des astronomes de l'époque n'ait signalé la TP. Compte tenu de la petite taille de la TP dans les dessins de 1672 à 1692, il est fort probable que ce manque d'observations sur une période aussi longue signifie que la TP avait en fait disparue. Les premiers dessins montrant la signature de la GTR actuelle, remontent quant à eux à 1831, et les dessins des années 1870-1871 la montraient comme un ovale clair bien défini entouré d'un anneau elliptique sombre. Cet ovale est devenu rougeâtre et entouré par le "Creux" entre 1872 et 1876. La première photographie disponible montrant une GTR proéminente a été obtenue en 1879. La GTR actuelle existe donc avec certitude depuis au moins 193 ans.

Les chercheurs ont ensuite mesuré la taille de la TP, de la GTR et du Creux, de 1665 à aujourd'hui. La longueur de la TP est 2 à 3 fois plus petite que celle de la GTR de 1879. La longueur de la GTR a diminué au fil du temps à un rythme moyen de -0,18°/an (207 km/an) (augmentant ces dernières années à -0,3°/an). La GTR a connu une augmentation transitoire de sa longueur de 1927 à 1939 à un rythme de +0,07°/an (80 km/an), lorsqu'elle a englouti les nuages ​​d'une importante perturbation tropicale qui s'est développée à l'époque. Le Hollow a suivi un taux de réduction moyen similaire de -0,20°/an (230 km/an). Malgré l'imprécision inhérente à la mesure des dessins du 17ème siècle, la TP semble également montrer une diminution similaire en longueur. Pour les chercheurs, l'extrapolation en fonction du temps par un ajustement polynomial de la diminution de la GTR suggère fortement que la TP n'est pas la  GTR. La TP aurait dû croître régulièrement entre 1713 et 1879 à un rythme de +0,14°/an (160 km/an) pour devenir la GTR. Cela est hautement improbable puisque aucun rapport d'observation de grande tache n'existe au cours de cette longue période et, de plus, aucune croissance continue et soutenue de la taille n'a jamais été signalée dans les vortex de Jupiter.

Dans le sens méridional, la GTR a progressivement diminué sa largeur depuis 1879 à un rythme moyen de -0,03°/an (36 km/an). A noter que cette réduction s'est accélérée depuis 2010 à -0,17°/an et actuellement, le GTR a à peu près la même largeur que le TP. En supposant que la GTR et le Hollow sont des ellipses à demi-axes (a, b), leur excentricité a diminué de 0,92 en 1879 à 0,6 en 2023, c'est-à-dire que les deux deviennent des ovales de forme plus arrondie. Leur aire A=πab a diminué approximativement linéairement et si cette réduction persiste, cela pourrait conduire à l'un des deux cas suivants : la disparition totale de la GTR (comme ce fut le cas de la TP), ou bien l'atteinte d'une taille stable à longue durée de vie. Les chercheurs notent également que l'excentricité et la superficie de la GTR actuelle sont similaires à celles de la TP. 


En ce qui concerne la vitesse, la dérive de vitesse zonale qui avait été observée sur  la TP variait d'environ -10 à -6 m/s alors que celle de la GTR est de -4 à -1 m/s. Cette différence de vitesse peut être due à un décalage de latitude de leurs centres de 1° maximum (par rapport au profil de vent zonal de fond), ou bien être intrinsèque et liée à leurs propriétés dynamiques, ou à une combinaison des deux. Cette vitesse différente est en tous cas un autre argument  indiquant que la TP n'est pas la GTR.

Guidés par ces observations historiques et les données récentes sur la GTR, Sánchez-Lavega et ses collaborateurs ont effectué des simulations numériques de différents mécanismes dynamiques qui auraient pu conduire à la genèse de la GTR. Ils explorent trois scénarios plausibles : une "super-tempête", la fusion de chaînes de vortex plus petits que la GTR, ou sa naissance sous la forme d'une cellule allongée (une proto-GTR) générée par une perturbation des vents zonaux cisaillés méridionalement.

Les résultats de ces simulations, indiquent que les mécanismes de super-tempête et de fusion, bien qu’ils génèrent un seul anticyclone, sont peu susceptibles d’avoir formé la GTR. Les deux phénomènes n’ont jamais été observés à la latitude de la grande tache rouge et, s’ils s’étaient produits, les astronomes de l’époque l’auraient signalé. La cellule allongée, à rotation lente, en revanche, rappelle les premières observations de la GTR au milieu du XIXe siècle, avec cet ovale très allongé. Le mécanisme STrD, qui est une perturbation atmosphérique courante à cette latitude de Jupiter, semble plus plausible pour avoir généré une proto-GTR, selon les chercheurs. Ils expliquent par ailleurs qu'un mécanisme similaire pourrait avoir été à l'origine de la formation des autres grands anticyclones de Jupiter situés entre deux jets plus au sud à 33°S. Enfin, la comparaison de la vitesse de rotation du précurseur de la GTR prédite par les modèles, avec les mesures récentes de la circulation de la GTR effectuées par les missions spatiales, indique que la GTR a augmenté sa vitesse de rotation à mesure qu'elle rétrécissait, acquérant cohérence et compacité, et formant le vortex actuel plus rond.

Il apparaît ainsi que la Grande Tache Rouge n'a pas plus de 360 ans, mais plus modestement environ 200 ans et est en fin de vie. L'étude de Sanchez-Lavega et ses collègues exclut que la GTR se soit formée par la fusion de vortex ou par une super tempête, mais indique qu'elle s'est très probablement formée à partir d'une perturbation d'écoulement entre les deux jets zonaux dans l'atmosphère de Jupiter, opposés entre sa zone nord et sa zone sud. Si tel est le cas, la grande tache aurait dû avoir une faible vitesse tangentielle à sa naissance, qui n'aurait cessé d'augmenter au fil du temps à mesure que sa taille diminuait. Elle finira par disparaître dans quelques décennies, comme la tache ovale qu'avait observé Jean Dominique Cassini sous Louis XIV.

Source

The Origin of Jupiter's Great Red Spot
Agustín Sánchez-Lavega et al.
Geophysical Research Letters (16 June 2024)

Illustrations

1. La Grande Tache Rouge imagée 
2. Dessins et photographies de la TP et de la GTR : a) Cassini le 19 Janvier 1672; b) S. Swabe le 10 Mai 1851; c) Photo par A. Common le 3 Septembre 1879: d) Photo de l'Observatoire Lick le 14 Octobre 1890.
3. Jupiter et sa grade tache imagée en infra-rouge par le télescope Webb (NASA)
4. Agustín Sánchez-Lavega 

Aucun commentaire:

Enregistrer un commentaire

Merci !