22/06/25

Détection directe en rayons X d'un filament de gaz intergalactique chaud (WHIM)


Des astronomes ont découvert un immense filament de gaz chaud reliant quatre amas de galaxies au sein du superamas de Shapley. Dix fois plus massif que notre galaxie, ce filament apparaît contenir une partie de la matière baryonique « manquante » de l'Univers, confirmant les prédictions des simulations cosmologiques qui allaient dans ce sens. Ils publient leur découverte dans Astronomy&Astrophysics.

On rappelle que, aujourd'hui, plus d'un tiers de la matière normale de l'Univers local manque à l'appel. Elle n'a pas encore été observée, mais elle est nécessaire au bon fonctionnement du modèle cosmologique. Le modèle standard suggère que cette matière insaisissable pourrait exister sous forme de longs filaments de gaz chaud, reliant les groupes d'amas qu'on appelle le WHIM (Warm <hot Intergalactic Medium). Ce dernier présente une faible luminosité de surface et une émission de rayons X mous, ce qui le rend difficile à détecter. Jusqu'à présent, l'émission X du WHIM n'a ​​été détectée que dans un très petit nombre de filaments individuels, tandis que c'est dans un nombre encore plus restreint de filaments, que le WHIM a pu être analysé par spectroscopie.

Konstantinos Migkas (Université de Leiden) et  ses collaborateurs ont utilisé les télescopes spatiaux à rayons X XMM-Newton de l'ESA et Suzaku de la JAXA pour caractériser un tel filament de gaz chaud qui relie deux paires d'amas de galaxies entre eux : A3530/32 et A3528-N/S. Ils ont utilisé XMM-Newton pour rendre compte de manière robuste des sources ponctuelles dans le filament, que Suzaku ne parvient pas à détecter en raison de sa faible résolution angulaire, et pour caractériser complètement les amas voisins et leur contamination du signal dans la région du filament (par exemple des trous noirs supermassifs en arrière plan ou en avant plan). 

Migkas et ses collaborateurs ont ainsi produit l'imagerie directe et la détection spectroscopique de l'émission thermique étendue du WHIM de ce filament unique. Leur analyse confirme l'existence d'une émission de rayons X supplémentaire de 21±3 % dans tout le filament par rapport au fond du ciel à un niveau statistique de 6,1 σ . Les chercheurs parviennent à contraindre la température du gaz du filament, la densité électronique et la surdensité baryonique à respectivement  kT ≈ 0,8−1,1 keV (soit plus de 10 millions de K), ne ≈10-5 électrons.cm-3 et δb ≈ 30−40, respectivement, ce qui est en accord avec les simulations cosmologiques, et ce pour  pour la première fois pour un filament unique. Indépendamment de l'analyse des rayons X, les astrophysiciens identifient également une surdensité de galaxies dans tout le filament grâce à la base de données de vitesse du superamas de Shapley et peuvent limiter la longueur 3D du filament à 7,2 Mpc, avec un angle de 53° avec le plan du ciel. Il s'agit de la première détection spectroscopique en rayons X d'une émission du WHIM "pur" provenant d'un filament individuel et intact, sans contamination significative provenant de sources ponctuelles non résolues.

La détection de l'émission du WHIM des filaments cosmiques est essentielle pour résoudre le problème des baryons manquants et mieux comprendre la structure à grande échelle. Mais très peu d'études ont rapporté une détection par rayons X de l'émission provenant de filaments individuels, et encore moins d'études ont analysé l'émission WHIM spectralement. Dans cette étude, les chercheurs ont détecté sans ambiguïté un filament cosmique de 7,2 Mpc de long par imagerie et analyse spectroscopique. Ce filament avait été récemment découvert grâce à sa surdensité optique de galaxies par Aghanim et al. (2024).

Les quatre amas ont des masses intermédiaires d'environ 200 000 milliards de masses solaires. La masse totale de gaz du filament est d'environ 12 000 milliards  M⊙ . Les résultats de Migkas et al. concordent bien avec les propriétés thermodynamiques des filaments telles que prédites par les simulations cosmologiques de la structure à grande échelle. Mais des études antérieures avaient rapporté un δb environ 5 fois plus élevé pour d'autres filaments. Les chercheurs précisent que cette différence peut provenir du fait que leur méthodologie détaillée permet d'éliminer efficacement la contamination de l'émission de type AGN, ce qui a permis de retracer l'émission WHIM provenant uniquement du filament vierge, alors que les études précédentes auraient pu être davantage affectées par l'émission résiduelle des halos et des sources ponctuelles. Et cela pourrait les avoir conduits à surestimer la densité du gaz filamentaire.

En conclusion, Migkas et ses collaborateurs avertissent que, lorsque seules les données Suzaku sont utilisées (sans résoudre toutes les autres sources dans l'ensemble du filament), les propriétés du gaz sont significativement affectées et cela biaise les résultats finaux. C'est grâce à l'ajout des données X profondes de haute qualité, comme celles de XMM-Newton qu'ils ont pu caractériser le WHIM de manière robuste.

Les "baryons manquants" ne sont désormais plus manquants. 


Source

Detection of pure warm-hot intergalactic medium emission from a 7.2 Mpc long filament in the Shapley supercluster using X-ray spectroscopy

K. Migkas et al.

A&A, 698, A270 (19 June 2025)

Illustrations

1. Le filament de gaz chaud détecté entre les quatre amas de galaxies (Migkas et al.)
2. Konstantinos Migkas


1 commentaire :

Pascal a dit…

Bonjour,
Article à rapprocher de celui de L. Connor et al. (A gas-rich cosmic web revealed by the partitioning of the missing baryons. Nat Astron, published online June 16, 2025), qui utilise la dispersion spectrale des FRB sur un large échantillon pour mesurer d'une part la fraction cosmique baryonique (Omega b . h70 = 0.051 +/-0.006), et d'autre part la fraction des baryons contenue dans le milieu intergalactique sous forme de gaz ionisé peu dense (WHIM) : f IGM = 0.76, , et celle des halos galactiques (0.15) ; restent environ 10% dans les étoiles et le gaz froid galactique. Les"baryons manquant" sont de mieux en mieux cernés.