samedi 25 avril 2015

Quizz Astro n°6

Vous avez été 11 cette semaine a avoir trouvé au moins 8 bonnes réponses! Félicitations à tous les participants (car l'essentiel est bien là). Bravo tout de même à PL56 (10), zac (10), Alain (10), Ryuzaki21 (9), Marc T (9), rene66 (9), Ad (9), yuhn (8), K (8),  mf (8), curu (8). 
Alors, on y retourne tout de suite, avec 10 nouvelles questions, tiens...




jeudi 23 avril 2015

Les américains accélèrent la recherche sur les neutrinos

Déménager toute une expérience de physique d'un continent à l'autre n'est ni banal ni anodin. On vient d'apprendre que l'expérience européenne ICARUS, dédiée à la recherche sur l'oscillation des neutrinos, et jusqu'alors implantée au laboratoire italien du Gran Sasso, allait migrer au Etats-Unis, pour être installée au célèbre FermiLab près de Chicago.


Le détecteur de neutrinos ICARUS au laboratoire
du Gran Sasso (INFN)
ICARUS a fonctionné au Gran Sasso durant 4 ans, entre 2010 et 2014 et tous ces équipements, ces détecteurs, sont aujourd'hui au CERN pour être mis à niveau. ICARUS mesurait des neutrinos produits par l'Homme, des neutrinos fabriqués au CERN, justement, grâce à un faisceau de particules. C'étaient les mêmes neutrinos que ceux qui avaient été mesurés comme étant supraluminiques fin 2011, souvenez-vous...
C'est dans le but avoué de trouver un nouveau type de neutrino que l'équipe européenne s'est laissée convaincre d'installer ses détecteurs à argon liquide auprès de l'accélérateur de FermiLab. Mais cette fois-ci, ICARUS ne sera donc pas à plus de 700 km de la source de neutrinos, mais tout près.
Le comité des programmes scientifiques de Fermilab a récemment proposé un programme, dirigé par le physicien américain Peter Wilson, pour installer non pas un mais trois gros détecteurs à proximité de l'un des sept grands accélérateurs du Fermi National Accelerator Laboratory (FermiLab pour les intimes), en plein dans le faisceau de neutrinos. Le but est clairement affiché : déterminer si oui ou non un 4ème neutrino, stérile, existe.
La raison qui pousse les américains à chercher le neutrino stérile (qui rappelons-le, est dit stérile car il n'interagirait strictement avec rien, sauf la gravitation), c'est que des indices ont été observés il y a presque 20 ans maintenant, dans deux expériences américaines : LSND (Liquid Scintillator Neutrino Experiment) à Los Alamos, et MiniBooNE à Fermilab déjà.
Ce qu'avaient entrevu ces deux expériences c'est une disparition de neutrinos "normaux" à courte distance de leur point de production. Ils auraient pu osciller vers le fameux état "stérile" et ainsi disparaître des écrans radar des détecteurs...
Inutile de préciser que l'existence d'un tel neutrino stérile chamboulerait pas mal le petit monde de la physique des particules, mais aussi celui de l'astrophysique, avec des implications multiples, à commencer par une nouvelle voie possible pour expliquer la masse manquante dans l'Univers. L'enjeu est plus qu'important.
ICARUS formera donc l'un des trois gros détecteurs, les deux autres sont tout d'abord le détecteur SBND (Short Baseline Neutrino Detector), avec ses 260 tonnes d'argon liquide, et qui sera situé le plus près dans le faisceau de neutrinos. SBND permettra de détecter les neutrinos du faisceau avant même qu'ils aient pu se transformer d'une espèce à l'autre (les trois espèces standard sont le neutrino électronique, le neutrino muonique et le neutrino tauique). SBND est encore en cours de construction par morceaux, entre les Etats-Unis, le Royaume-Uni et la Suisse.
Un peu plus loin dans le faisceau, se trouvera un détecteur déjà existant, qui s'appelle MicroBooNE, qui est le successeur de MiniBooNE, et qui fait tout de même une jolie masse de 170 tonnes. MicroBooNE est dédié exclusivement à la mise en évidence d'un neutrino stérile. Enfin, c'est encore un peu plus loin dans le faisceau que sera positionné ICARUS, ses 20 m de long et ses 760 tonnes.  L'une des raisons pour lesquelles les physiciens d'ICARUS ont décidé de quitter le faisceau du CERN au profit de celui de FermiLab est que le faisceau du CERN n'était pas adapté pour la recherche du neutrino stérile. Il faut pouvoir se placer relativement à courte distance du lieu de production des neutrinos. Or au Gran Sasso, ICARUS se trouvait à 730 km de la source de neutrinos, bien trop loin.

Ce qui est passionnant dans cette montée en puissance de FermiLab dans la recherche sur les neutrinos, c'est qu'ils ont su faire travailler ensemble trois expériences, suffisamment différentes pour être totalement complémentaires. Les trois détecteurs devraient voir ensemble leurs premiers neutrinos à partir de 2018.
Et les américains ne s'arrêtent pas là. Ils ont vraiment décidé de mettre le paquet sur la recherche consacrée aux neutrinos de tous poils. En effet, à l'instar de ce qui se fait entre le CERN et le labo souterrain du Gran Sasso, les américains vont également installer des détecteurs à très longue distance pour étudier les oscillations des neutrinos produits à FermiLab, mais avec une distance encore plus grande, bien sûr.

Schéma du principe de mesure du faisceau de neutrino à très longue distance (Fermi National Accelerator Laboratory)
Cette fois-ci, c'est une expérience en cours de projet qui va être transformée pour être boostée : LBNE (Long Baseline Neutrino Experiment) va devenir DUNE (Deep Underground Neutrino Experiment). La nouvelle collaboration a déjà gagné environ 50 nouvelles institutions partenaires depuis le début de l'année... DUNE sera l'expérience la plus puissante dans la recherche sur les neutrinos, avec une distance de plus de 1200 km séparant un premier détecteur situé à FermiLab et le second, gigantesque (10000 tonnes), situé dans le laboratoire souterrain de Sanford dans le Dakota du Sud. 
Grâce à ces installations, les physiciens vont pouvoir étudier les oscillations des neutrinos avec un luxe de précision encore jamais atteinte. Et grâce à ses nouveaux partenaires, DUNE voit aujourd'hui la participation de 148 institutions de 23 pays différents, autant dire toute la communauté mondiale des neutrinos... 
Les physiciens vont travailler d'arrache-pied pendant plusieurs années pour mettre en service au plus vite cette grosse machine, qui sera immanquablement à l'origine de découvertes surprenantes, mais malheureusement pas avant 2021.

Les américains semblent en tous cas avoir repris la main sur la physique des neutrinos, si ce n'est sur la physique des particules, 4 ans après l'arrêt de leur collisionneur emblématique, le Tevatron, le 30 septembre 2011, après 28 ans de collisions de protons/antiprotons.


Sources :

Italian neutrino experiment to move to the US
Kathryn Jepsen
Symmetry Magazine

The dawn of DUNE
Jennifer Huber and Kathryn Jepsen
Symmetry Magazine

mardi 21 avril 2015

Simulation réaliste (et observation) d'un couple de trous noirs supermassifs en voie de fusion

Presqu'au même moment où l'on apprend la mise en évidence de ce qui ressemble au couple de trous noirs supermassifs le plus serré "vu" à ce jour, une équipe de chercheurs américain publie ses résultats sur des simulations innovantes, justement appliquées à la fusion de deux trous noirs supermassifs très très proches l'un de l'autre.




C'est la première fois qu'une telle simulation est effectuée, prenant en considération toutes les subtilités des équations de la Relativité Générale. L'équipe de Stuart Shapiro, de l'université d'Illinois s'est attachée à simuler à la fois les phénomènes gravitationnels, mais aussi les rayonnements des disques de matière magnétisée accompagnant les deux trous noirs, en appliquant les équations magnétohydrodynamiques en champ gravitationnel relativiste. Ils parviennent ainsi à produire un rendu en 3 dimensions, qu'ils ont produit sous forme d'une animation, d'une part montrant le mouvement des corps, et d'autre part l'évolution de l'émission d'ondes gravitationnelles qui accompagne inéluctablement une telle fusion de trous noirs, surtout lorsqu'ils sont supermassifs (voir ci-dessous). 

Evolution dynamique des trous noirs et des champs magnétiques :



Emissions d'ondes gravitationnelles : 



Ces animations viennent d'être présentées lors d'une conférence de l'American Physical Society, à Baltimore, la semaine dernière.

Le tout nouveau couple putatif de trous noirs supermassifs très proches l'un de l'autre serait formé de deux bébés de 10 milliards de masses solaires, et découvert grâce à l'observation de signaux périodiques en provenance d'un quasar situé à plus de 10 milliards d'années lumière et qui répond au nom de PSO J334.2028+01.4075. Cette étude est, quant à elle, parue également la semaine dernière, dans The Astrophysical Journal Letters.

Normalement, l'intensité lumineuse d'un quasar est variable, mais elle varie aléatoirement, sans aucune logique. Ce qu'ont observé Tingting Liu de l'université du Maryland et son équipe, grâce au télescope hawaïen Pan-STARRS (Panoramic Survey Telescope & Rapid Response System, c'est la présence d'une variation périodique dans le signal lumineux de PSO J334.2028+01.4075, avec une période de 542 jours. La seule solution possible à ce phénomène périodique selon les auteurs est l'existence d'un système binaire de trous noirs supermassifs. Et la période orbitale permet d'en déduire la masse et la distance qui sépare les deux objets. Cette distance de séparation ne vaudrait d'après les auteurs que 7 fois le rayon de Schwartzchild, soit à peine 0,02 années-lumière. C'est si proche qu'on peut parler en kilomètres... ça fait 186 milliards de kilomètres.
Ce qui conforte également Tingting Liu et ses collègues, c'est que ce couple de trous noirs supermassifs (ce quasar, en fait) se trouve exactement à l'époque de ce qu'on appelle le pic de fusions de trous noirs supermassifs, là où ce type d'événements est le plus fréquent.
La recherche systématique de variations périodiques de quasars n'en est qu'à ces tout débuts. La suite du programme initié avec le télescope PanSTARRS devrait étudier environ 1000 quasars répartis sur 80 degrés² du ciel, et en 2023, la Large Synoptic Sky Survey fera le même type de recherches mais avec un volume plus de 1000 fois plus grand, devrait suivre plusieurs dizaines de millions de quasars et trouver probablement plusieurs milliers de couples de trous noirs supermassifs par cette méthode.

Si la chance nous sourit, nous pourrons peut-être assister dans quelques années en direct à la fusion de deux trous noirs supermassifs qui auront été découverts juste avant leur tango infernal, et nous pourrons alors confronter les belles simulations avec la réalité.

Sources : 

3D simulations of colliding black holes hailed as most realistic yet
Ron Cowen
Nature (20 April 2015)

A periodically varying luminous quasar at z = 2 from the Pan-STARRS 1 Medium Deep Survey: a candidate supermassive black hole binary in the gravitational wave-driven regime
Tingting Liu et al.
The Astrophysical Journal Letters, 803:L16 (6pp),  20 April 2015

dimanche 19 avril 2015

Quizz Astro n°5

Vous avez été 8 a avoir trouvé plus de 8 bonnes réponses au Quizz n°4 consacré au télescope Hubble. Bravo à PL56 (10), Altair (10), curu (10), rene66 (9), Savate (9), Clemtroff (9), didier (9), mf (9).
Et bien, puisque c'est comme ça, on remet le couvert ! A vos souris.




vendredi 17 avril 2015

La différence de masse entre proton et neutron obtenue par calcul pour la première fois

Ça pourrait paraître trivial, mais ça ne l'est pas du tout ! Des chercheurs européens viennent de réussir à calculer avec une très bonne précision la différence de masse qui existe entre le proton et le neutron. Ils l'ont calculée uniquement grâce aux théories de l'électrodynamique quantique (la QED, qui décrit la force électromagnétique) et de la chromodynamique quantique (la QCD, qui décrit elle la force nucléaire forte).



La différence de masse existant entre un neutron et un proton vaut très exactement 0,14% de la masse moyenne du proton et du neutron (la masse du neutron vaut 939,565 MeV et celle du proton 938,272 MeV).
Cette petite différence de 1,29 MeV entre nos deux nucléons préférés est fondamentale pour nous tous. En effet, si cet écart de masse était différent, l'Univers ne ressemblerait pas du tout à ce que nous connaissons...
Si cette différence de masse était plus faible que la masse de l'électron (0,511 MeV), même très légèrement, les atomes d'hydrogène se seraient transformés immédiatement en neutrons + neutrinos, par un effet qu'on appelle la désintégration béta inverse (le proton et l'électron fusionnent). A l'inverse, si la différence de masse entre le neutron et le proton était inférieure à sa valeur actuelle mais supérieure à la masse de l'électron, les conséquences seraient dramatiques : l'Univers primordial aurait rapidement et très efficacement produit une fusion de l'hydrogène en hélium, ne laissant presque plus d'hydrogène pour fournir du carburant aux étoiles, il n'y aurait pour ainsi dire pas existé d'étoiles. 
Et si l'écart de masse entre protons et neutrons était supérieure à ce qu'elle est, la synthèse des noyaux au delà de l'hydrogène serait très difficile, voire impossible, et donc adieu nos beaux atomes de carbone, d'oxygène et autres, adieu nos belles molécules...

Il y a deux contributions fondamentales à la différence de masse entre neutrons et protons, qui diffèrent, rappelons-le, seulement par un de leur trois quarks constitutifs (quarks u,u,d pour le proton et u,d,d pour le neutron) : ces deux contributions sont d'une part les interactions électromagnétiques entre les trois quarks et la différence de masse entre le quark Up (u) et le quark Down (d).
Ce qui est contre intuitif, c'est que, si le proton ne différait du neutron que par sa charge électrique positive et si cette charge était uniformément répartie, sa masse devrait être plus grande que celle du neutron, à cause de son énergie électrostatique additionnelle (selon Einstein, l'énergie est équivalente à la masse, faut-il le préciser, on exprime d'ailleurs les masses en unité d'énergie). Mais c'est là qu'intervient la structure interne des nucléons, avec leurs trois quarks et leur mer de gluons liant le tout. 


Selon le modèle théorique de la chromodynamique quantique (QCD), les quarks Up et Down se comportent de la même façon avec les gluons, qui sont les bosons médiateurs de la force nucléaire forte entre quarks. C'est le fait que le neutron a un quark Down en lieu et place d'un quark Up, qui le rend plus lourd que le proton : le quark Down se trouve être plus lourd que le quark Up. 
Mais cette vision des quarks est très simplifiée. Pour connaître exactement la différence de masse entre ces deux assemblages de quarks et de gluons que sont le neutron et le proton, les équations de la QED et de la QCD doivent être résolues en même temps. Et il n'y a pas que le neutron et le proton qui possèdent des quarks u et d, il existe aussi une flopée d'autres particules. 
Szabolcs Borsányi, de la Bergische Universität de Wuppertal et ses collègues européens, dont un physicien français de l'Université Aix-Marseille, se sont ainsi attaqué à la résolution de ces équations pour toute une série de particules composites dont le neutron et le proton. Ils ont pour cela profité des progrès gigantesques de la puissance de calcul informatique, qui n'était pas accessible il y a encore quelques années. 
Ecarts de masse calculés pour les couples neutron/proton (DN
mésons Sigma+-Sigma- (DS), Xi-/Xi0 (DX) ou mésons  D+/D0 (DD
) entre autres (Borsanyi et al.)


Ce qui est remarquable dans ces calculs, c'est que les physiciens ont utilisé avec succès une méthode parfois controversée qu'on appelle la renormalisation. Une partie de la masse des quarks Up ou Down est liée à l'énergie de leur champ électrique, qui est une auto-énergie, une quantité divergente, infinie. Mais des quantités finies  ayant un sens physique, peuvent en être extraites en calculant des changements (finis) de cette auto-énergie lorsque le quark se retrouve dans des environnements différents, comme par exemple dans différentes particules. C'est cela qu'on appelle la renormalisation. Le succès du résultat de Szabolcs Borsányi et ses collègues montre que c'est la bonne méthode, même si elle déconcerte pas mal de physiciens.
Szabolcs Borsányi et ses collègues ont donc réussi à calculer pour la première fois l'écart en masse du neutron et du proton, avec une incertitude de quelques dizaines de pourcents seulement, ce qui est une prouesse, et des incertitudes plus faibles pour d'autres particules, et même des prédictions pour des cas encore jamais mesurés expérimentalement.

Avec les progrès futurs de la puissance des ordinateurs, la précision obtenue par ces mêmes calculs pourra être encore grandement améliorée. Cette première est en tous cas un véritable jalon dans le domaine situé à la lisière de la physique des particules et de la physique nucléaire : inclure avec succès dans un même calcul la QED et la QCD avec de grands détails, deux théories si différentes dans leur approche calculatoire...

Grâce à ce type de calculs, la physique nucléaire risque bien de subir une petite révolution en atteignant un degré de précision accru, qui pourrait avoir des implications importantes pour l'astrophysique, par exemple pour l'étude précise des supernovae ou des étoiles à neutrons, qui sont aujourd'hui toujours difficiles à modéliser.


Source : 
Ab initio calculation of the neutron-proton mass difference
Sz. Borsanyi, et al.
Science Vol. 347 no. 6229 pp. 1452-1455 (27 March 2015)

lundi 13 avril 2015

Première carte détaillée de la répartition de Matière Noire

Des astrophysiciens du programme DES (Dark Energy Survey) viennent de rendre publique la première carte détaillée de la répartition de matière noire (ou carte des distorsions d'espace temps produisant des effets de microlentilles gravitationnelles si l'on préfère). Cette carte a été produite grâce à l'imageur le plus puissant existant actuellement, avec ses 570 Mégapixels.

Première carte de la distribution de matière noire sur une large zone par le Dark Energy Survey. L'échelle de couleur représente la densité de masse reconstruite (le rouge est le plus dense). Les amas de galaxies sont représentés par les points gris, plus ils sont gros, plus l'amas est grand. (Dark Energy Survey)
Cette nouvelle carte est la carte la plus étendue à ce jour avec autant de détails, et elle devrait permettre de mieux comprendre les liens existant entre la matière noire et la matière ordinaire. Le but ultime du programme DES n'est pas d'étudier la matière noire, mais de percer les secrets de l'énergie noire, cette (encore) mystérieuse énergie qui produit une accélération de l'expansion de l'Univers. Et pour étudier sereinement l'énergie noire, nous avons besoin de cartographier le plus précisément possible comment se répartit la matière, toute la matière, c'est à dire tout ce qui est suffisamment massif pour déformer l'espace-temps. Et ce sont ces petites déformations de l'espace-temps qu'est capable de voir le télescope de DES avec son imageur hors du commun.
L'équipe internationale menée par Vinu Vikram de Argonne National Laboratory, qui publie cette étude dans les Monthly Notices of the Royal Astronomical Society, a mesuré les distorsions à peine perceptibles des images de plus de 2 millions de galaxies durant plus d'un an pour construire cette nouvelle carte.

L'imageur de DES est monté sur un télescope relativement modeste de 4 m de diamètre, le télescope Victor Bronco situé à l'Observatoire inter-américain du Cerro Tololo au Chili. 
Cette carte de la matière noire via le micro-lensing exploite environ seulement 3% de la zone du ciel que DES couvrira durant sa mission de 5 ans... Grâce aux futures données de DES du même type, les scientifiques pourront mieux tester les théories cosmologiques actuelles en évaluant les quantités respectives de matière visible et invisible.

Pour l'instant, DES semble valider le concept actuel selon lequel les galaxies se forment là où il y a de fortes concentrations de masse (invisible) produisant des champs gravitationnels importants. Les cartes montrent de vastes zones en forme de filaments de matière le long desquels des galaxies et des amas de galaxies se trouvent, puis de vastes régions quasi-vides.
Des études complémentaires sur ces filaments et ces vides permettront de comprendre un peu mieux leur origine et surtout de mieux tester les différents modèles théoriques associés.

Source : 
Wide-Field Lensing Mass Maps from DES Science Verification Data
V. Vikram et al.
A paraître dans les Monthly Notices of the Royal Astronomical Society

dimanche 12 avril 2015

Quizz Astro n°4

Bon, OK, j'y suis allé un peu fort. Ce 3ème Quizz était sans doute un peu trop difficile car vous n'êtes que 2 à avoir trouvé 8 bonnes réponses ou plus... Bravo à PL56 (10) et rene66 (8). Un grand bravo aux 12 d'entre vous qui ont trouvé cette charade de derrière les fagots, où se cachait Subrahmanyan Chandrasekhar ! 

Cette semaine, ce sera plus facile, car il s'agit d'un quizz spécial Hubble, pour fêter ses 25 ans en orbite. A vos souris!