vendredi 15 septembre 2017

Un nouveau type de matière noire explique la diversité des courbes de rotation galactiques


Un des problèmes difficilement explicables par le modèle dominant actuel de la matière noire, la « Cold Dark Matter » (CDM) est l'existence d'une très grande diversité des formes des courbes de rotation des galaxies. On se souvient que c’est justement l’observation de ces courbes de rotation (la vitesse de rotation des étoiles et du gaz en fonction de la distance du centre de la galaxie) qui a permis il y a 50 ans de mettre le doigt sur une grosse anomalie dynamique/gravitationnelle, menant finalement au concept de matière noire. Le modèle dominant actuel propose depuis quelques décennies une matière noire « froide » constituée de particules massives interagissant très faiblement avec la matière ordinaire autrement que par la gravitation, et n’interagissant pas sur elle-même...



Les étoiles et le gaz dans les galaxies montrent une vitesse de rotation qui tend à devenir constante quand leur distance du centre augmente, la courbe de rotation devient plate, et ce, quelle que soit la masse du halo de matière noire au sein duquel évolue le disque galactique. Mais il se trouve que pour une masse de halo de matière noire donnée, la forme des courbes de rotation avant qu’elles deviennent plates, peut varier fortement. Certaines galaxies ont une courbe de rotation qui augmente très vite avant d’atteindre le plateau, et d’autres augmentent au contraire lentement. Cette diversité, le modèle de matière noire froide «classique » ne l’explique pas.
Des chercheurs de l’Université de Californie se sont intéressés à ce problème en travaillant sur les données de rotation de 30 galaxies spirales représentant bien la diversité qui peut être observée, et dont la masse varie de trois ordres de grandeur pour couvrir un large panel.
Ayuki Kamada, Manoj Kaplinghat, Hai-Bo Yu et Andrew Pace ont émis l’hypothèse selon laquelle les particules massives formant le halo de matière noire, auraient la capacité à interagir entre elles, pour voir si un tel comportement permettrait d’expliquer la diversité des courbes de rotation observées. On parle de self-interacting dark matter (SIDM) (matière noire auto-interagissante).
Le modèle SIDM a été construit aux alentours des années 2000 et a été remis sur le devant de la scène il y a une petite dizaine d’années, notamment par Hai-Bo Yu à l’Université de Californie. Dans leurs calculs et simulations, les chercheurs ont réutilisé la relation masse-concentration qui est celle du modèle LCDM et ont fixé une valeur pour la section efficace d'interaction entre particules massives de matière noire (leur section efficace par unité de masse pour être exact, qui quantifie leur probabilité d'interaction) : 3 cm²/g, ce qui ferait une section efficace de 180 barns pour une particule de 100 GeV/c², donc très loin d'être négligeable.
Les physiciens publient leur résultat aujourd’hui dans la prestigieuse Physical Review Letters  et à la question « est-ce que ça marche mieux ? », ils trouvent une réponse positive. Ça marche même beaucoup mieux, et pour toutes les galaxies étudiées, dans toute leur diversité.
Leur modèle inclut un halo de matière noire qui interagit avec elle-même surtout dans les régions internes de la galaxie et qui influe sur la distribution de matière ordinaire dans le halo ainsi que sur l’histoire de la formation de ce halo.
Les collisions des particules de matière noire entre elles ont pour effet de thermaliser la zone centrale du halo en perdant de l’énergie, là où se trouve la galaxie « lumineuse ». Cette thermalisation, selon les auteurs,  a pour effet de « lier » ensemble les distributions de matière ordinaire et de matière noire, si bien qu’elles se comportent un peu comme une seule entité. Le halo de matière noire auto-interagissante, dans ce modèle, devient alors suffisamment "flexible" pour expliquer la diversité des courbes de rotation observées. L’effet sur le potentiel gravitationnel et donc sur la forme de la courbe de rotation est important et reproduit les données observationnelles d’une manière excellente.

Kamada et ses collègues montrent par ailleurs que l’effet est différent pour les galaxies faiblement lumineuses et pour les galaxies très lumineuses. Pour les premières, le processus de thermalisation produit une « expulsion » des particules de matière noire en dehors de la région centrale du halo, réduisant alors la densité. Pour les secondes, très lumineuses, comme notre galaxie, la thermalisation a pour effet, à l’inverse,  de pousser les particules massives vers le fond du puits gravitationnel de la matière visible, augmentant alors la densité vers le centre.
Une chose importante que rappellent les auteurs de cette étude, c’est que ce nouveau modèle de matière noire reste tout à fait conforme aux autres observables cosmologiques classiquement obtenus et validés par le modèle LCDM, comme la formation des grandes structures cosmiques.
La très forte compatibilité de ce nouveau modèle avec les observations est très intéressante car elle indique que cette solution pourrait être la bonne. Cela ouvrirait des perspectives nouvelles, même si la nature des hypothétiques particules massives interagissant si faiblement avec la matière ordinaire reste toujours inconnue aujourd’hui. Le fait de savoir que, si elles existent, elles auraient une interaction entre elles, permet de bien mieux les cerner.

Source 

Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves
Ayuki Kamada, Manoj Kaplinghat, Andrew B. Pace, and Hai-Bo Yu
Physical Review Letters 119, 111102 (15 September 2017)


Illustrations

1. Courbes de rotation de trois galaxies différentes NGC6503, UGC128 et NGC 2903. La contribution du halo de SIDM est représenté en trait bleu plein, la contribution d'un halo de type CDM est représenté en bleu pointillé. La courbe fittée avec le nouveau modèle (somme des contribution SIDM+étoiles+bulbe+gaz) est la courbe rouge (Kamada et al., Phys. Rev. Lett. 119) 

2. Hai-Bo Yu est professeur assistant en astrophysique théorique à l'Université de Californie (Riverside) (image I. Pittalwala, UC Riverside)


mercredi 13 septembre 2017

Le cœur d’un amas globulaire dévoilé par ses pulsars


Notre galaxie contient de nombreux amas globulaires, des amas sphériques de plusieurs centaines de milliers voire plusieurs millions d’étoiles. Les amas globulaires sont les plus vieux systèmes stellaires connus, composés d’étoiles très vieilles qui datent de la naissance des galaxies il y a 12 à 13 milliards d’années. La mesure des vitesses individuelles des étoiles dans ces amas est rendue difficile par la présence fréquente de poussières et la surpopulation stellaire dans les régions où ils se trouvent. Et pourtant, les paramètres dynamiques à l’intérieur des amas globulaires sont cruciaux à connaître pour pouvoir déterminer leur structure centrale et notamment si ils abritent ou non un objet compact de type trou noir.



dimanche 10 septembre 2017

L'adieu de Cassini à Encelade


Ce sont les dernières images rapprochées que nous aurons du petit Encelade par la sonde Cassini. Ces images ont été obtenues le 28 août dernier durant près de 14 heures d'affilée... On peut y distinguer pour la dernière fois les geysers d'eau salée s'échappant du pôle Sud de ce monde où s'est peut-être développée une forme de vie dans son océan liquide d'eau chaude.

La séquence débute par une vue de la surface éclairée par la lumière réfléchie de Saturne puis se termine avec un éclairement direct (partiel) du Soleil. La distance de Cassini variait de 1,1 million à 868 000 kilomètres de Encelade, fournissant une résolution comprise entre 5 et 7 kilomètres par pixel.

Les lunes de Saturne ne seront plus visitées avant plusieurs dizaines d'années au moins... Rappelons que c'est pour ne pas risquer de contaminer Encelade ou Titan par d'éventuelles bactéries terrestres que Cassini va être détruite dans l'atmosphère de Saturne dans cinq jours.


vendredi 8 septembre 2017

Qui peut détecter la Terre par ses transits devant le Soleil ?


Observer le passage des exoplanètes devant leur  étoile, leur transit, est une de nos meilleures techniques pour les trouver. Mais qu’en est-il du transit des planètes de notre système solaire devant le Soleil, vu de très loin ? Une superbe étude parue il y a quelques semaines se penche sur cette question pour savoir depuis quelle exoplanète connue la Terre  pourrait être détectée par la méthode du transit. 




jeudi 7 septembre 2017

Les aurores polaires de Jupiter sont différentes des aurores terrestres


L’un des objectifs majeurs de la sonde Juno en orbite autour de Jupiter est d’étudier les aurores polaires de la géante gazeuse. Les premières analyses viennent d’être publiées et montrent que les aurores joviennes les plus intenses ne sont pas produites par le même processus que dans le cas des plus intenses aurores terrestres.




lundi 4 septembre 2017

Nouveaux indices de la présence d'un trou noir de 100 000 masses solaires dans notre Galaxie

Le 13 janvier 2016, nous parlions ici de la découverte de signes montrant la présence probable d'un trou noir de 100 000 masses solaires dans notre Galaxie, un trou noir dit de "masse intermédiaire", des trous noirs qui sont si difficiles à trouver. Aujourd'hui, l'équipe japonaise à l'origine de cette observation publie de nouvelles données en ondes millimétriques qui confirment leur première hypothèse.




dimanche 3 septembre 2017

Des étoiles trop jeunes à proximité de Sgr A*


Encore une chose curieuse observée au centre de notre Galaxie. Il s'agit cette fois-ci d'un groupe d'étoiles, qui se trouvent être très jeunes. Trop jeunes... pour être là où elles sont, c'est à dire à très grande proximité du trou noir supermassif Sgr A*...



jeudi 31 août 2017

Ces étoiles qui s'approchent du Soleil


Ça bouge pas mal du côté des étoiles de notre Galaxie. Les mouvements de plus de 320 000 étoiles mesurés par le télescope européen Gaia révèlent que le nombre d’étoiles qui vont s’approcher près du soleil dans le futur (à moins de 7 années-lumière) est de l’ordre de 90 tous les millions d’années, avec, pour les plus forts rapprochements, de potentiels effets de déstabilisation du nuage d’Oort et d’éventuelles pluies de comètes s’abattant sur le système solaire interne. 




mardi 29 août 2017

Mesure d'un champ magnétique à 5 milliards d'années-lumière


Mesurer le champ magnétique d'une galaxie à 4,6 milliards d'années-lumière de nous, c'est ce qu'ont réussi à faire une équipe d'astronomes américains, canadiens et européens. Alors que cette galaxie est plus jeune que la nôtre de près 5 milliards d'années, son champ magnétique paraît similaire à celui de notre Galaxie, une nouvelle petite énigme. 



dimanche 27 août 2017

La supernova de type Ia qui émettait des rayons X


Les seules supernovas qui émettent des rayons X sont celles dont l'étoile explosée était entourée d'une coquille de gaz, que l'onde de choc à échauffée jusqu'à produire ces rayonnements. Il s'agit donc des supernovas par effondrement de cœur, ou supernovas de type II. Les supernovas de type Ia, elles, ne sont pas entourées de gaz et ne produisent donc pas de rayons X, un des paramètres cruciaux qui les distingue de leurs consoeurs. Enfin... toutes sauf un cas, la supernova Ia nommée SN2012ca...




jeudi 24 août 2017

Preuve de la présence d’une étoile compagne dans une supernova de type Ia


Le 10 mars 2017 est apparue une supernova dans la galaxie NGC 5643 située à 55 millions d’années-lumière : SN 2017cbv, une supernova de type Ia, explosion d’une étoile naine blanche. Ce jour-là, pour la première fois, dans les minutes et les heures qui ont suivi l’explosion, des astronomes ont réussi à observer la preuve de la présence d’une étoile compagne, sous la forme d’un pic de luminosité en ultra-violet.




mercredi 23 août 2017

Les mouvements de la surface d'une étoile mesurés pour la première fois


Pour la première fois, les mouvements de l’enveloppe gazeuse d’une étoile autre que le Soleil ont pu être observés et mesurés. Il s’agit bien évidemment d’une étoile supergéante relativement proche, l’une des plus célèbres supergéantes rouges de notre ciel : Antarès. Ces observations permettent de mieux comprendre les mécanismes qui sont à l’origine de la perte de masse de ces étoiles énormes.




vendredi 9 juin 2017

Mise en sommeil


Ça Se Passe Là-Haut se met en sommeil pour une durée indéterminée. Durant cette éclipse, ne perdez pas vos habitudes, plongez-vous dans nos 959 billets et  602 émissions couvrant tous les univers que nous abordons ici depuis de nombreuses années:










L’Univers des questions brûlantes
Ce blog s’est nourri quotidiennement des questions les plus brûlantes en astrophysique: phénomènes étonnants, incompris, impossibles a priori, avant que des solutions ne soient trouvées. Bouffées de rayons gamma, supernovas atypiques, alignements de quasars, et aujourd’hui bouffées d’ondes radio ultra-courtes… La recherche en train de se faire et dans tous ces états, vous y reviendrez aussi souvent que nécessaire.

Restez bien les yeux vers le ciel et les pieds sur Terre, qui restera notre seule et unique planète avec ou sans Donald Trump... 

Bon ciel !

mercredi 7 juin 2017

Hubble mesure pour la première fois la masse d'une étoile par un effet relativiste


Le télescope Hubble est à nouveau à l'origine d'une petite prouesse scientifique : mesurer l'effet de déflexion gravitationnelle produit par une seule étoile, le même type de mesure qui permit à Arthur Eddington il y a près d'un siècle de confirmer la théorie de la Relativité Générale d'Einstein. Cette mesure de Hubble permet de mesurer directement la masse d'une étoile proche (une naine blanche) en appliquant les équations de la Relativité Générale.




mardi 6 juin 2017

La froideur de la Nébuleuse du Boomerang expliquée


La nébuleuse du Boomerang est l’objet astrophysique le plus froid que l’on connaisse, avec une température de 0,5 K, elle est même plus froide que le rayonnement du fond diffus cosmologique. De nouvelles observations effectuées avec ALMA permettent de comprendre l’origine de cette température extrême.