Le pulsar PSR J0453+1559 a été découvert en 2015, il est remarquable car il s'agit d'un système binaire rare composé de deux étoiles à neutrons. Ce qui a rendu PSR J0453+1559 encore plus surprenant, ce sont les masses des étoiles à neutrons. Alors que la première étoile a une masse de 1,559 masses solaires, la seconde atteint seulement 1,174 M☉, ce qui en fait l'étoile à neutrons la plus petite connue, une masse si faible qu'elle est difficile à expliquer. Une équipe d'astrophysiciens ont effectué des simulations et arrivent à produire une étoile à neutrons de 1,192 masses solaires... on y est presque. L'étude est parue dans Physical Review Letters.
Astronomie, Astrophysique, Astroparticules, Cosmologie. L'infini se contemple, indéfiniment. ISSN 2272-5768
12/04/25
L'étoile à neutrons la plus légère connue peut avoir été produite par une supernova de type II
Le pulsar PSR J0453+1559 a été découvert en 2015, il est remarquable car il s'agit d'un système binaire rare composé de deux étoiles à neutrons. Ce qui a rendu PSR J0453+1559 encore plus surprenant, ce sont les masses des étoiles à neutrons. Alors que la première étoile a une masse de 1,559 masses solaires, la seconde atteint seulement 1,174 M☉, ce qui en fait l'étoile à neutrons la plus petite connue, une masse si faible qu'elle est difficile à expliquer. Une équipe d'astrophysiciens ont effectué des simulations et arrivent à produire une étoile à neutrons de 1,192 masses solaires... on y est presque. L'étude est parue dans Physical Review Letters.
22/10/24
Nouvelles mesures du rayon de la plus grosse étoile à neutrons
Le 24 janvier 2024, étrangement, le journal The Astrophysical Journal recevait deux articles scientifiques aux titres quasi identiques, provenant de deux équipes différentes. Nul doute que l'éditeur scientifique à demandé à l'un et à l'autre premier auteur de participer au comité de lecture de l'article de son concurrent, avec l'idée derrière la tête de les publier ensemble dans le même numéro. Après les révisions demandées pour ces deux papiers, le premier a été finalement été accepté pour publication le 31 mai et le second le 7 juin. Et c'est donc le 18 octobre que tous les deux ont été publiés par le célèbre journal d'Astrophysique américain dans le même numéro.
Les équipes de Alexander Dittman (université du Maryland) d'un côté et de Tuomo Salmi (université d'Amsterdam) de l'autre ont exploité des observations de longue durée du pulsar PSR J0740+6620, connu pour sa masse très élevée (2,08 masses solaires) par le télescope spatial NICER, afin de déterminer précisément son rayon, mais avec des méthodes un peu différentes.
PSR J0740+6620 est l'étoile à neutrons avec la masse la plus élevée déterminée avec précision à ce jour, déduite d'observations radio (elle vaut 2,08 ± 0,07 M⊙). Ce pulsar en rotation rapide (une période de rotation sur elle-même de 2,88 ms) se trouve à environ 4000 années-lumière. La mesure de son rayon est donc très importante pour contraindre les propriétés de la matière à haute densité des étoiles à neutrons. Trois étoiles à neutrons ont des masses élevées proches de la limite théorique, à environ 2 M⊙ : il y a PSR J1614-2230, avec une masse de 1,937 ± 0,014 M⊙, PSR J0348+0432, avec M = 2,01 ± 0,04 M⊙ et donc PSR J0740+6620, avec M = 2,08 ± 0,07 M⊙ (Cromartie et al. 2020 ; Fonseca et al. 2021 ). Les incertitudes citées désignent les régions crédibles à 68 %. Les observations de telles étoiles à neutrons massives peuvent exclure les équations d'état qui prédisent des masses maximales stables sensiblement plus faibles. De plus, les observations de l'événement d'ondes gravitationnelles GW170817 ont fourni des contraintes sur la déformabilité par marée des étoiles à neutrons, excluant les équations d'état qui indiqueraient que les étoiles à neutrons auraient des rayons relativement élevés à une masse donnée.
Dans les intérieurs des étoiles à neutrons, l'équation d'état dépend de la densité et de la composition. On peut exprimer la pression sous la forme d'une loi de la forme P ∝ ρα où ρ est la densité. Une équation d'état "rigide" (ou "dure") est une équation dans laquelle la pression augmente beaucoup pour une augmentation donnée de la densité. Un tel matériau serait plus difficile à comprimer. À l'inverse, une équation d'état souple produit une augmentation de pression plus faible pour un changement de densité et est facile à comprimer. Si α est grand, on parle donc d'une une équation d'état dure. A l'inverse, une équation d'état "molle" (ou "douce") est définie pour α < 5/3.
Dans les étoiles à neutrons, la dureté de l'équation d'état contrôle la relation masse-rayon et leur masse maximale possible. Une équation d'état plus dure donne un rayon plus grand pour la même masse et une masse maximale possible de l'étoile à neutrons plus grande.
Précédemment, Miller et al. (l'équipe de Dittman) et Riley et al. (l'équipe de Salmi) avaient rapporté des mesures du rayon de PSR J0740+6620, déjà basées sur des observations de NICER (Neutron Star Interior Composition Explorer, qui esst installé sur l'ISS) qui avaient été accumulées jusqu'au 17 avril 2020, puis un ensemble de données accumulées ensuite jusqu'au 28 décembre 2021 avait été présenté par Salmi et al. quelques mois plus tard.
NICER peut effectuer des mesures résolues en phase et en énergie des impulsions de rayons X thermiques produites par certaines étoiles à neutrons en rotation. Cette émission thermique est dominée par les régions de surface chauffées par le bombardement de particules chargées provenant d'un courant de retour magnétosphérique. Ces mesures sont utilisées pour contraindre la masse et le rayon de ces étoiles à neutrons en modélisant les impulsions de rayons X produites par les régions chaudes à la surface de l'étoile à neutrons en rotation rapide, y compris les effets relativistes.
L'ajout d'observations du télescope spatial XMM-Newton est particulièrement utile lors de l'analyse des données de NICER sur PSR J0740+6620, étant donné la faible luminosité de la source et le champ de vision encombré, car les données d'imagerie fournies par XMM-Newton contraignent le flux stellaire moyenné en phase et le fond non stellaire.Dittman et ses collaborateurs et Salmi et les siens ont ainsi produit chacun de leur côté une mise à jour de la mesure du rayon, obtenue en ajustant les modèles d'émission de rayons X de la surface de l'étoile à neutrons aux mêmes données de NICER accumulées cette fois jusqu'au 21 avril 2022, totalisant une exposition supplémentaire d'environ 1,1 Ms par rapport à l'ensemble de données analysées par Miller et al. et Riley et al. qui étaient basées sur 1,6 Ms d'exposition, ce qui fait presque deux fois plus de données.
En 2021, Miller et al. trouvaient pour PSR J0740+6620 un rayon de 13,71 km (+2,61/-1,50 km). Aujourd'hui, Alexander Dittman et ses collaborateurs trouvent 12,76 km (+1,02/-1,49 km), tandis que Tuomo Salmi et al. trouvent 12,49 km (+1,28/-0,88 km). L'étoile à neutron a donc un volume un peu petit que ce qu'on pensait depuis 2021 : 29% de moins et est donc plus compacte.
Aujourd'hui, NICER est toujours en train d'acquérir de nouveaux photons X qui ont voyagé pendant 4000 ans en provenance de PSR J0740+6620, mais aussi d'autres étoiles à neutrons laboratoires. La relation masse-rayon devrait donc pouvoir être affinée dans le futur en réduisant encore les incertitudes, ce qui réduira par là même les incertitudes qui existent toujours sur l'équation d'état des étoiles à neutrons.
Sources
A More Precise Measurement of the Radius of PSR J0740+6620 Using Updated NICER Data21/06/24
Observation de la précession de la croûte d'une étoile à neutrons
Hercules X-1 est un pulsar à rayons X situé à environ 7 kpc de la Terre. Son émission varie sur trois échelles de temps distinctes : l'étoile à neutrons tourne sur elle-même toutes les 1,2 s, elle est éclipsée par sa compagne toutes les 1,7 jours, et le système présente une période superorbitale mystérieuse de 35 jours, qui est restée stable depuis sa découverte. Aujourd’hui, une équipe d’astrophysiciens vient de trouver une explication convaincante pour cette oscillation du signal de rayons X. Ils publient leur étude dans Nature Astronomy.
08/06/24
Découverte de l'étoile à neutrons la plus lente jamais détectée
Une équipe d'astrophysiciens vient de découvrir l'étoile à neutrons la plus lente jamais détectée grâce aux réseaux de radiotélescopes MeerKAT et ASKAP. Elle a une période de rotation de 54 minutes. L'étude est parue dans Nature Astronomy.
Manisha Caleb (Université de Sydney) et ses collaborateurs recherchaient un sursaut radio rapide dans la zone d'un sursaut gamma (GRB 221009A) lorsqu’ils ont repéré par hasard ce signal radio clignotant lentement dans les données. ASKAP J1935+2148, c'est son nom, est située à une distance de 16000 années-lumière, à l'ascension droite 19 h 35 min 05,126 s ± 1,5″ et à la déclinaison +21° 48′ 41,047″′ ± 1,5″, ce qui est par coïncidence à seulement 5,6′ du célèbre magnétar SGR 1935+2154, et se trouve au bord du reste de supernova dans lequel SGR 1935+2154 est centré. L'observation a duré environ 6 h, révélant 4 impulsions lumineuses d'une durée de 10 à 50 s dans les images. L'inspection des courbes de lumière des impulsions a révélé une période d'environ 54 minutes. Etonnamment, ASKAP J1935+2148 qui est très probablement une étoile à neutrons, affiche trois états d'émission distincts, chacun avec des propriétés totalement différentes des autres Les transitoires radio de longue période de ce type constituent une classe émergente d’événements astrophysiques extrêmes dont seulement trois spécimens sont connus aujourd'hui, avec ce dernier spécimen. Ces objets émettent des impulsions cohérentes et hautement polarisées d’une durée généralement de quelques dizaines de secondes et de périodes de quelques minutes à environ une heure.
Bien que des naines blanches magnétiques et des magnétars, isolés ou dans des systèmes binaires, aient été invoqués pour expliquer ces phénomènes, aucun consensus clair ne s'est dégagé. Ce nouveau cas, ASKAP J1935+2148, a une période de 53,8 minutes exactement. Ses 3 états d'émission distincts sont premièrement un état d'impulsions brillants avec des impulsions hautement polarisées linéairement avec des largeurs de 10 à 50 secondes ; deuxièmement : un état d'impulsions faibles qui est environ 26 fois plus faible que l'état brillant avec des impulsions hautement polarisées circulairement d'une largeur d'environ 370 millisecondes ; et enfin, troisièmement un état de repos ou d'extinction sans impulsions. Il a été observé que les deux premiers états évoluent progressivement au cours d'une période de 8 mois, l'état éteint étant intercalé entre eux, suggérant des changements physiques dans la région produisant l'émission.
Caleb et ses collaborateurs montrent que la contrainte sur le rayon de la source pour la période observée exclut une origine de naine blanche magnétique isolée. Contrairement aux autres sources à longue période, ASKAP 1935+2148 présente des variations marquées dans les modes d'émission qui rappellent fortement les étoiles à neutrons. Mais selon les chercheurs, ses propriétés radio remettent en question notre compréhension actuelle de l’émission et de l’évolution des étoiles à neutrons.
Une estimation de la mesure de dispersion du signal radio n’a malheureusement pas été possible en raison de la résolution temporelle grossière de 10 s. Mais Caleb et ses collaborateurs quantifient la polarisation des impulsions et trouvent une polarisation linéaire supérieure à 90 %, ce qui implique des champs magnétiques fortement ordonnés, avec une mesure de rotation de Faraday de +159,3 ± 0,3 rad m-2. En comparaison, la mesure de la rotation de Faraday de SGR 1935+2154 est d'environ +107 rad m−2.
Les temps d'arrivée de toutes les impulsions détectées par ASKAP et MeerKAT ont été utilisés pour déterminer la période P et la dérivée de la période P°. Caleb et ses collègues trouvent une valeur de 3225,313 ± 0,002 s pour P et une limite supérieure sur la dérivée de la période, P°, inférieure à 1,2 ± 1,5 × 10-10 s.s-1. L'emplacement d'ASKAP J1935+2148 dans l'espace des paramètres P-P°, qui est fréquemment utilisé pour classer différents types de pulsars, est cohérent avec d'autres sources connues à longue période. ASKAP J1935+2148 réside en fait dans la "vallée de la mort" des pulsars, là où aucun signal radio détectable n'est attendu, ce qui remet en question les théories actuellement acceptées sur l'émission radio associée au ralentissement de la rotation des étoiles à neutrons (spin-down).
En supposant une origine d'étoile à neutrons, la période et la limite supérieure de la dérivée de période correspondent à une intensité de champ magnétique de surface de quelques 1016 G et à une luminosité de rotation de quelques 1026 erg s-1, pour une configuration de champ magnétique dipolaire, un angle d'inclinaison magnétique de 90° et un moment d'inertie de 1045 g.cm². On ne sait pas pourquoi un magnétar posséderait encore un champ magnétique aussi important à ce stade de son évolution. Alors que ASKAP J1935+2148 est assez semblable à GLEAM-X J1627−5235 et à GPM J1839−10, en revanche, la luminosité radio observée d'ASKAP J1935+2148 est beaucoup plus grande que la luminosité déduite du spin-down, ce qui suggère que des mécanismes d'émission alternatifs doivent être impliqués pour expliquer ces transitoires radio de longue période.
Et, pour les chercheurs, les divers états d'émission de cet objet rare offrent des informations précieuses sur les processus magnétosphériques et les mécanismes d'émission, montrant des similitudes avec les pulsars PSR J1107−5907, PSR B0823+26 et PSR B2111+46. Mais ils constatent que l'explication de l'émission radio via la production de paires au sein de magnétosphères dipolaires présente des défis considérables. Ils notent cependant qu'un champ magnétique important peut alimenter l'émission radio observée via la dissipation d'énergie qui serait due aux événements de reconnexion magnétique, ou bien à la détorsion des lignes de champ due au mouvement plastique de la croûte de l'étoile à neutrons.
Des simulations de synthèse de population intégrant divers paramètres tels que les masses, les rayons, les fractions de rayonnement et le champ magnétique montrent que seul un nombre limité d'émetteurs radio à longue période provenant d'étoiles à neutrons devraient exister dans la Galaxie. Alors que les naines blanches magnétiques ont été considérés comme responsables de l'émission radio observée dans des deux autres sources radio à longue période (GLEAM-X J1627−5235 et GPM J1839−10), cette solution est exclue pour ASKAP J1935+2148. Pour Caleb et ses collaborateurs, il est beaucoup plus probable qu’ASKAP J1935+2148 soit un magnétar ou une étoile à neutrons à période ultra longue, isolés ou bien dans un système binaire, même si ses caractéristiques posent des questions sur les modèles actuels des étoiles à neutrons.
Source
An emission-state-switching radio transient with a 54-minute period
M. Caleb et al.
Nature Astronomy (5 june 2024)
https://doi.org/10.1038/s41550-024-02277-w
Illustrations
1. Localisation avec ASKAP de la source J1935+2148, image centrée sur le magnétar galactique SGR +1935+2154 (Caleb et al.)
2. Graphe de la dérivée de la période en fonction de la période montrant la position singulière de ASKAP J1935+2148 (Caleb et al.)
3. Marisha Caleb
23/02/24
Webb dévoile une étoile à neutrons dans le résidu de la supernova SN 1987A
Un mystère vieux de plusieurs décennies concernant l'une des explosions d'étoiles les plus célèbres de l'histoire vient d'être résolu par le télescope spatial James Webb (JWST). Nous parlons de la supernova historique SN1987A et de la nature de l'astre compact qui en est le résidu. Une équipe montre la preuve que c'est une étoile à neutrons et non un trou noir, ils publient leur travail dans Science.
19/01/24
Découverte de la plus grosse étoile à neutrons, ou du plus petit trou noir
La masse maximale théorique d'une étoile à neutrons est comprise entre 2,2 et 2,5 masses solaires, alors que leur masse maximale observée vaut 2,08 masses solaires. La masse minimale observée d'un trou noir est quant à elle de l'ordre de 3,4 masses solaires (sans limite théorique). Il semble donc exister un écart de masse (un "gap") entre les étoiles à neutrons les plus massives et les trous noirs les moins massifs. Mais une équipe d'astrophysiciens rapporte aujourd'hui dans Science la découverte d'un objet compact d'environ 2,35 masses solaires qui se trouve donc au bord de ce "mass gap". Il pourrait s’agir soit de l’étoile à neutrons la plus massive, soit du trou noir le moins massif jamais observé.
14/11/23
Une étoile à neutrons de 0,77 masse solaire, vraiment ?
HESS J1731-347 est un objet compact, mais on ne sait pas vraiment ce que c'est. Il a une masse de seulement 0,77 masse solaire et un rayon de 10,4 km. Etoile à neutrons un peu bizarre ? Etoile de quarks ? Etoile hybride ? ou étoile à neutrons contenant de la matière noire ? Une équipe d'astrophysiciens a étudié différents modèles pour essayer de dénouer la pelote. Leur étude est parue dans The Astrophysical Journal.
11/08/23
Découverte d'une seconde source radio de type magnétar à très longue période
Le 26 janvier 2022, une équipe australienne publiait la découverte d'une source radio transitoire très atypique, qui ressemblait à un pulsar ou un magnétar mais avec une période ultra-longue de 18 minutes. L'équipe a poursuivi ses recherches d'objets similaires et ils viennent de trouver un second specimen du même genre, avec une période encore plus longue de 21 minutes qui produit des bouffées d'ondes radio qui durent jusqu'à 5 minutes à chaque fois. Comme pour la première découverte, les chercheurs publient leur étude dans Nature.
04/06/23
L'espace-temps rayonne à proximité des trous noirs et des étoiles à neutrons
Un trio de chercheurs néerlandais et allemands démontre que l'espace-temps se met à rayonner lorsqu'il est fortement courbé, comme à proximité des trous noirs et des étoiles à neutrons. Ce processus de création de paires de particules réelles à partir de particules virtuelles issues du vide à pour effet de dégonfler les trous noirs, à l'instar du rayonnement de Hawking. Ils publient leur étude dans Physical Review Letters.
11/04/23
Observation de la structure verticale du vent de disque d'accrétion autour d'une étoile à neutrons
Des astrophysiciens ont observé la structure détaillée du vent de disque d'accrétion de l'étoile à neutron de la binaire X Hercules X-1, un système dans lequel l'étoile à neutrons accrète la matière d'une étoile semblable au soleil. Les chercheurs ont exploité une singularité de ce disque d'accrétion : il oscille dans sa rotation, ce qui a permis l'observation de différentes perspectives et pour la première fois une carte bidimensionnelle de ses vents. L'étude est publiée dans Nature Astronomy.
03/03/23
Des accrétions similaires autour des trous noirs et des étoiles à neutrons
Des observations à multi-longueurs d'onde du rayonnement d'un système binaire impliquant une étoile à neutrons montrent des signatures similaires à celles d'une binaire impliquant un trou noir, ce qui suggère que le mécanisme d'accrétion est le même pour toutes ces sources à des luminosités élevées. L'étude est parue dans Nature.
11/01/23
Des oscillations quasipériodiques très rapides observées dans un sursaut gamma de fusion d'étoiles à neutrons
Des oscillations quasi périodiques très rapides ont été détectées dans deux sursauts γ apparus lors de collisions d'étoiles à neutrons. Un tel signal était prédit par des simulations relativistes qui indiquaient qu'une grosse étoile à neutrons devait se former durant quelques dizaines de millisecondes suite à la fusion, puis osciller avant de sombrer dans le noir d'un trou. L'étude est publiée dans Nature.
25/10/22
Découverte de la plus petite étoile à neutrons (ou de la première étoile à quarks)
Actuellement, HESS J1731-347 est étiquetée comme une étoile à neutrons, mais elle est inhabituelle car sa masse est très inférieure à 1 masse solaire, ce qui contredit la théorie qui fixe la limite inférieure à 1,1 masses solaires. Une équipe de chercheurs a affiné les caractéristiques de HESS J1731-347 et montrent qu'elle pourrait être un spécimen contenant des quarks Strange en grande proportion... L'étude est publiée dans Nature Astronomy.
30/09/22
Découverte d'une étoile à neutrons invisible
Généralement, les étoiles à neutrons sont découvertes par des observations aux longueurs d'onde radio, X ou gamma. Mais dans de très rares cas, le suivi du spectre d'une étoile dans le domaine visible peut prouver qu'elle tourne autour d'une étoile à neutrons invisible par ailleurs. C'est une telle découverte d'une étoile à neutrons candidate qui vient d'être faite grâce au relevé spectroscopique LAMOST, et qui est publiée dans Nature Astronomy.
30/07/22
Découverte de l'étoile à neutrons la plus massive : 2,35 masses solaires
Le pulsar PSR J0952-0607 (J0952) a été découvert par Bassa et al. en 2017 avec une période de rotation de 1,41 ms, ce qui en fait l'une des étoiles à neutrons à la rotation la plus rapide du disque de la Voie Lactée. Il s'agit d'un pulsar de type " veuve noire " dont l'étoile compagne de faible masse est dépouillée par le pulsar, irradiée et évaporée par sa luminosité. Aujourd'hui, une équipe d'astrophysiciens est parvenue à observer la très faible lumière de la petite étoile compagne, ce qui permet de déduire la masse de l'étoile à neutrons, et c'est le record absolu de masse, très proche de la valeur maximale théorique : 2,35 masses solaires! L'étude est publiée dans The Astrophysical Journal Letters.
08/05/22
Découverte d'une binaire "veuve noire" singulière
Ce qu'on appelle une "veuve noire" (black widow), c'est un système binaire composé d'une grosse étoile à neutrons et d'une toute petite étoile qui se fait dévorer et détruire à petits feux par l'étoile à neutrons. On en connaît aujourd'hui une dizaine depuis la découverte en 1988 du premier specimen. Aujourd'hui, une nouvelle veuve noire vient d'être trouvée, avec un record de période de rotation de seulement 62 minutes. Et ce couple infernal est orbité par une troisième étoile qui assite de loin au spectacle. L'étude est publiée dans Nature.
03/03/22
Les rayons X de GW170817 ne faiblissent plus 4 ans après la kilonova
L’événement GW170817 qui a vu le 17 août 2017 la fusion de deux étoiles à neutrons dans une myriade de rayonnements à toutes les longueurs d’ondes, des ondes radio aux ondes gravitationnelles en passant par les infra-rouges, les rayons X et les rayons gamma a très probablement produit un trou noir, qui serait le plus petit que l’on connaisse. Mais ce trou noir est-il né tout de suite après la fusion des étoiles à neutrons ? Une observation du signal de rayons X résiduel de la collision apporte une réponse. L’étude est à paraître dans The Astrophysical Journal Letters.
24/08/21
Découverte d'un nouveau pulsar en couple avec une autre étoile à neutrons
Parmi les presque 2900 pulsars qui ont été découverts depuis 1967 et les travaux pionniers de Jocelyn Bell-Burnell, qui vient de recevoir aujourd'hui-même une nouvelle distinction de la Royal Society (la Copley Medal), nous n’en connaissons que 15 qui sont binaires avec une étoile à neutrons pour compagne, et seulement un seul qui est constitué de deux pulsars détectables. Aujourd’hui, c’est un nouveau pulsar binaire accompagné d’une étoile à neutrons qui vient d’être découvert par une équipe internationale, avec à la clé l’observation d’un phénomène relativiste. L’étude a été acceptée par The Astrophysical Journal.
12/08/21
Découverte du sursaut gamma "long" le plus court, produit par un collapsar
Les sursauts gamma (GRB) ont été compris depuis quelques décennies comme provenant de deux phénomènes astrophysiques distincts. Ils sont généralement distingués par leur durée : les sursauts gamma courts (une durée inférieure à 2 s) proviennent de la fusion de deux étoiles à neutrons et sont relativement proches et les sursauts gamma longs (plus de 2 s et jusqu'à plusieurs minutes), eux, proviennent du collapse d'étoiles massives (des collapsars, qui peuvent être extrêmement éloignés). Le point commun entre les deux phénomènes est la création d'un trou noir qui accrète rapidement les résidus issus de sa création lors du cataclysme. Mais un GRB détecté il y a 1 an vient semer le trouble et est l'objet de deux articles d'équipes différentes dans Nature Astronomy parus le même jour : il possède les caractéristiques d'un GRB long mais n'a duré que 0,65 s...