La première carte précise des volcans de Io (satellite de Jupiter) vient d’être publiée par des chercheurs américains après avoir exploité la sonde Juno en orbite jovienne. Au total, 343 sources de chaleur ont été identifiées à la surface du satellite jovien, portant son nombre de volcans connus à 373. Et les chercheurs observent une apparente disparité de la puissance des volcans entre les hémisphères et les pôles… L’étude est publiée dans The Planetary Science Journal.
On connaît depuis longtemps l’origine de l'activité volcanique sur Io : elle est alimentée par la dissipation des marées dans ses couches internes, qui sont induites par son mouvement autour de Jupiter. Io est ainsi le corps le plus volcaniquement actif du système solaire. Mais les estimations de l'énergie thermique totale émise par les sources volcaniques ont souvent été jusqu’à 10 fois plus importantes que celles expliquées par les modèles de chauffage par marée à l'équilibre. Les estimations du flux de chaleur par unité de surface couvrent donc une large gamme d'une région à l'autre.
Il faut se rappeler que l'évolution orbitale d'Io est étroitement liée à celles d'Europe et de Ganymède. La rétroaction cyclique entre l'évolution thermique et l'évolution orbitale devrait entraîner des oscillations synchronisées dans le chauffage par les marées des trois lunes avec des périodes de l'ordre de 100 millions d’années. La compréhension de l'évolution du système nécessite des observations spatiales des processus volcaniques, géophysiques et orbitaux d'Io pour comprendre son évolution thermique et orbitale. En même temps, Io est un laboratoire extraordinaire de la taille d'une planète qui permet d'examiner l'évolution de sa température avec son orbite.
Les données envoyées par la sonde Juno de la NASA depuis son orbite polaire autour de Jupiter ont révélé les volcans polaires d'Io dans l'infrarouge à des échelles spatiales allant jusqu'à 13 km/pixel. Les nouvelles détections de points chauds de son instrument Jupiter Infrared Auroral Mapper (JIRAM) ont été ajoutées par Ashley Davies (Jet Propulsion Laboratory) et ses collaborateurs aux analyses précédentes, pour créer une carte actualisée de l'émission thermique volcanique d'Io.
Les observations JIRAM obtenues entre le 27 mars 2017 (orbite PJ05) et le 1er mars 2023 (orbite PJ49) ont permis d'identifier 273 sources thermiques volcaniques actives et , chose nouvelle, de quantifier l'émission thermique des principaux volcans polaires d'Io. Les données JIRAM fournissent un instantané global de l'endroit où l'activité volcanique effusive à haute température (des silicates fondus) se déroule actuellement sur Io.
Les observations polaires de JIRAM sur Io ont permis de combler les lacunes de la carte de l'activité volcanique qui avait été initialement produite en 2015, pour créer la première carte véritablement globale de l'activité volcanique en cours sur Io, à partir des points chauds détectés.
Pour les chercheurs, la présence de volcans polaires soutient, mais ne confirme pas nécessairement, la présence d'un océan de magma sur Io. Davies et ses collaborateurs constatent que le nombre de volcans actifs par unité de surface dans les régions polaires n'est pas différent de celui des basses latitudes, mais que les volcans polaires de Io sont plus petits, en termes d'émission thermique, que ceux des basses latitudes. Les volcans polaires émettent deux fois moins d'énergie que les volcans des basses latitudes (le pôle nord à lui seul émet environ 44 % d'énergie en moins par unité de surface que celle émise aux basses latitudes). Par ailleurs, quand ils comparent les deux pôles, les chercheurs voient que l'émission thermique des volcans de la calotte polaire sud est deux fois moins importante que celle des volcans de la calotte polaire nord. Il existe donc des dichotomies apparentes en termes d'advection volcanique et de production d'énergie résultante à la fois entre les hémisphères subjoviens et antijoviens, entre les régions polaires et les latitudes inférieures, ainsi qu'entre les régions polaires nord et sud.
Les planétologues attribuent ces différences à d’éventuelles asymétries internes ou bien à des variations de l’épaisseur de la lithosphère de Io.
Lorsqu’on utilise le nombre de points chauds, plutôt que l'émission thermique volcanique, cela ne permet pas de différencier les modèles d'océan magmatique et d'asthénosphère. Les distributions des flux de chaleur volcanique et des points chauds ne sont pas compatibles avec les modèles actuels de chauffage par les marées et d'advection volcanique. Il devient clair que le flux de chaleur de Io n'est pas bien pris en compte par ces modèles et que le chauffage intérieur de Io est plus complexe qu'on ne le pensait, impliquant probablement un océan magmatique global ou partiel.
La mesure de la distribution de l'émission thermique de fond (c'est-à-dire qui n'émane pas manifestement de l'activité volcanique actuelle ou récente) est une mesure cruciale qui devrait fournir des contraintes supplémentaires pour la modélisation future de l'intérieur de Io. Dans l'état actuel des choses, la nouvelle carte de l'émission thermique volcanique de Io constitue néanmoins une condition limite importante que les modèles de flux de chaleur de Io doivent reproduire.
Source
New Global Map of Io's Volcanic Thermal Emission and Discovery of Hemispherical Dichotomies
Ashley Davies et al.
The Planetary Science Journal, Volume 5, Number 5 (27 May 2024 )
https://doi.org/10.3847/PSJ/
Illustrations
1. Les volcans de Io vus en infra-rouge par Juno (NASA/JPL)
2. Cartographie des volcans établie par les auteurs (Ashley Davies et al.)
3. Ashley Davies