jeudi 18 avril 2024

Le trou noir de Leo I ne serait finalement pas supermassif

 


En décembre 2021, je vous relatais la découverte d'un trou noir supermassif de plus de 3 millions de masses solaire au centre d'une galaxie naine qui s'appelle Leo I. Mais aujourd'hui, une nouvelle analyse de cette petite galaxie a été effectuée par une équipe d'astrophysiciens et ils n'arrivent pas à la même conclusion. Il y aurait bien un trou noir massif, mais pas supermassif. L'étude est publiée dans Astronomy&Astrophysics.

Leo I est la galaxie satellite de la Voie Lactée qui en est l'une des plus éloignées et des plus brillantes, située à 257 kpc de la Voie Lactée. Leo I intrigue les astronomes depuis longtemps déjà car elle semble posséder peu de matière noire. L'étude des galaxies naines sphéroïdales comme Leo I offre une occasion unique de caractériser en détail la structure des sous-halo de matière noire. Comparées à d'autres galaxies, les naines sphéroïdales sont relativement simples à mesurer et à simuler, ce qui permet de faire des inférences fiables sur leurs paramètres, et donc de mieux contraindre les propriétés de la matière noire.

Car les galaxies naines satellites de la Voie Lactée sont suffisamment proches pour fournir des traceurs dynamiques individuels (c'est-à-dire des étoiles résolues individuellement), et par rapport aux autres galaxies, elles sont réputées pour avoir une influence relativement insignifiante des baryons, ce qui permet une estimation plus robuste de leurs propriétés dynamiques et de leurs profils de matière noire.

En 2021, María José Bustamante-Rosell et ses collaborateurs avaient voulu tester sur Leo I différents scénarios concernant la matière noire et les trous noirs dans les galaxies naines sphéroïdales.  Ils avaient utilisé les mêmes modèles dynamiques rigoureux appliqués aux galaxies plus grandes. Il faut dire que le théoricien Amaro-Seoane avait suggéré en 2014 que les galaxies naines pouvaient abriter un trou noir beaucoup plus massif que ce que l'on pensait jusqu'alors, s'approchant de 1 million de masses solaires, qui pourrait apparaître via des collisions multiples au sein d'amas stellaires compacts.

Des études de la métallicité, de mouvement propre et des mesures de vitesse radiale ont accumulé une quantité importante de données sur la galaxie Leo I. Mais pourtant, ces données n'ont jamais permis de converger vers une image unique des caractéristiques de son halo de matière noire.

Bustamante-Rosell et al. avaient mesuré le profil lumineux stellaire et  exploré la cinématique des étoiles. En jouant sur les paramètres du modèle de la galaxie pour faire coller les observations avec les simulations, ils étaient parvenus à la conclusion de la présence d'un trou noir au centre de la galaxie naine, devant avoir une masse probable de 3,3 millions de masses solaires ! 

Evidemment, le fait qu'un trou noir aussi massif puisse être présent au sein de cette petite galaxie, qui représenterait presque la moitié de sa masse stellaire (5,5 millions de masses solaires) a posé de sérieuses questions dans la communauté astrophysique. C'est pour éclaircir cette étonnante découverte que Raffaele Pascale (INAF, Bologne) et ses collaborateurs ont repris les mêmes données de spectroscopie de champ intégrale qu'avaient utilisées Bustamante-Rosell et al., mais en les réanalysant avec d'autres méthodes. Ils ont utilisé des modèles d'équilibre basés sur des fonctions de distribution et avec une exploration approfondie d'un très grand espace de paramètres. Les chercheurs exploitent une analyse bayésienne en comparant modèle et données.

Sur l'a priori exploré, la distribution a posteriori est presque uniforme vers les faibles masses et augmente légèrement autour de M≃ 105,5 M, alors qu'il présente une forte troncature autour de ∼106  M. Selon Pascale et ses collaborateurs, cela suggère fortement qu’il n’existe pas suffisamment de preuves statistiques pour affirmer la détection d’un trou noir supermassif. L'inférence établit une limite supérieure pour la masse qui vaut 676 000 M à 3σ, avec une valeur médiane de 7760 masses solaires. Il s'agirait donc d'un trou noir de masse intermédiaire, et non d'un trou noir supermassif (qui ont une masse supérieure à 1 million de masses solaires)

Les chercheurs indiquent que la masse déduite du trou noir se traduit par une limite supérieure de son rayon d'influence Rinfl  ≡  GM/σlos (où σlos est la dispersion de la vitesse) qui est comparable à la moyenne de la distance des secteurs cinématiques les plus internes de la galaxie  (≃19 pc). Par conséquent, la cinématique des régions internes exclut effectivement l’existence d’un trou noir supermassif, plutôt que de soutenir sa présence.

Mais le trou noir serait tout de même assez gros dans sa catégorie. Sur la base de relations d'échelle, pour une galaxie similaire à Léo I, avec une dispersion de vitesse comprise entre 10 et 12 km s-1 , on devrait s'attendre à un trou noir intermédiaire d'au plus de 10 000 M , ou de manière équivalente à un rapport de masse μ  ≡  MTN / M  compris entre 10-4  et 10-3. Les limites supérieures sur la masse du trou noir et sur μ que Pascale et ses collaborateurs trouvent sont en bon accord avec ces valeurs. En termes de μ, ils  mesurent une médiane qui vaut 0,0013. Ces valeurs représentent les limites inférieures qui peuvent être imposées par l'ensemble de données cinématiques.

Pour les auteurs de cette étude, il est très difficile d’identifier de manière concluante la raison de l’écart entre leur résultats et ceux de Bustamante-Rosell et al. de 2021. Contrairement au cas de NGC 6388, où deux ensembles de données donnent des résultats différents, Pascale et son équipe ont ici utilisé le même ensemble de données que Bustamante-Rosell et al, mais avec des algorithmes et des modèles d'ajustement différents. Ainsi, l’utilisation de la spectroscopie de champ intégral ne peut pas être à l’origine de ces différences.

Il faut dire que l’utilisation de la spectroscopie intégrale de champ pour rechercher des trous noirs intermédiaires dans des systèmes stellaires denses a été largement débattue dans le passé. Dans les amas globulaires, on pense, par exemple, que la méthodologie peut introduire des biais, dans la mesure où les spectres qui sont collectés peuvent être dominés par quelques étoiles brillantes plutôt que d'échantillonner toute la distribution stellaire sous-jacente. NGC 6388 est emblématique à cet égard : les spectres des étoiles individuelles indiquent une dispersion de vitesse centrale d'environ 10 km s-1, tandis que les valeurs de la spectroscopie de champ intégral indiquent une dispersion aussi élevée que 25 km s-1 (Lützgendorf et al. 2011 ), qui peut être interprétée comme une signature de trou noir massif.

Pascale et ses collaborateurs estiment que les différences dans les résultats proviennent d’une interaction de facteurs. Une solution potentielle à ce problème pourrait consister à utiliser des vitesses d'étoiles individuelles qui échantillonnent la région donnée par le rayon d'influence du trou noir. Mais la distance de Leo I pose un défi de taille aux astrophysiciens. Ils estiment qu'un échantillon d'au moins 100 vitesses radiales avec une erreur inférieure à 0,2 σlos serait nécessaire pour récupérer toute la distribution de vitesses. Dans le cas de Leo I, cela impliquerait de travailler avec plus de 100 étoiles ayant une erreur de vitesse radiale inférieure à 2 km s-1, des étoiles confinées dans une région inférieure à 15 secondes d'arc.

Le trou noir putatif de Leo I serait donc tout au plus un trou noir de masse intermédiaire un peu gros, mais non supermassif. Cette valeur maximale de 676 000 masses solaires est également beaucoup plus conforme aux scénarios de formation des galaxies naines, mais l'écart d'un facteur 5 qui est obtenu par rapport à l'étude parue il y a trois ans reste encore à expliquer.


Source

The central black hole in the dwarf spheroidal galaxy Leo I: Not supermassive, at most an intermediate-mass candidate

R. Pascale et al.

Astronomy&Astrophysics Volume 684, 17 April 2024

https://doi.org/10.1051/0004-6361/202449620


Illustrations

1. La galaxie naine Leo I (Sloan Digital Sky Survey)

2. Plage de masse obtenue par l'inférence bayésienne pour le trou noir de Leo I (Pascale et al.)

3. Raffaele Pascale


Aucun commentaire :